iHERO: Interactive Human-oriented Exploration and Supervision Under Scarce Communication Peking University Zhuoli Tian, Yuyang Zhang, Jinsheng Wei, Meng Guo

Motivation

- Multi-robot Exploration: **limited** communication crucial role of human operator Human-robot Teaming: **usual supervise** exploration progress
 - send requests to robot team • operator may **move** in the environment

Problem Formulation

Human Requests:

- \square $\mathbf{Q}_{\mathbf{0}}$: latencies should be smaller than bound
- \square Q₁ :prioritize the specfied region
- \square Q₂ :specify operator's desired next position

Objective: minimize exlporation time

Overall Framework

Generalization

Different Human Behaviors

77.8s	252.9s	314.6 s	512.6s	1	87.7s	118.8 s	196.5s	239.1s
	<u>^</u>	<u>~~</u>	<u> </u>				~	

subject to human requests

Experiments

Different constraints

 $T_{\rm h} = 120$ $T_{\rm h} = 240$ □ Latency constraint is satisfied at all time. □ Small bound: frequent update, but small coverage. □ Large bound:complete coverage, but larger latency

Snapshots of operator's movement

□ The operator can change latency bound through online interaction.

□ Latency and efficiency change accordingly.

Exploration Progress $00 - M_{all}^d - M_{all}^s$

□ The performance of our system is robust to different human behaviors, even for random movement.

Heterogeneous Fleet

Robot Failure

• Our framework can deal with robot failure through online coordination.

Hardware Demonstration

3 5 7 9 Number of Robots

movement extends this boundry. □ Movement yields larger efficiency.

time(s)

□ iHERO is the only method that (i) achieves 100% coverage across all three scenarios; (ii) requires the least number of return events than all baselines; (iii) has the highest efficiency over all baselines across all scenarios; (iv) supports **online interactions** such as Q0, Q1, Q2 requests.

Conclusion

- Intermittent communication protocol to ensure timely update to operator.
- **Two explicit human requests:** Specify prioritized region & Dynamically move in the environment.

Various generalizations.